Abstract

An artificial spinal implant is disclosed which when placed between two adjacent vertebrae directly participates and is incorporated in the ensuing fusion. Instrumentation and procedure is also disclosed.

Inventors: Michelson; Gary Karlin (Venice, CA)
Family ID: 39105510
Appl. No.:
Filed: 1992-10-29
Current U.S. Class: 606/86A; 606/279
Current CPC Class: A61B 17/16 (20130101); A61B 17/1757 (20130101); A61F 2/446 (20130101); A61F 2/4611 (20130101); A61B 17/1671 (20130101); A61B 2090/036 (20160201); A61B 17/8875 (20130101); A61B 2017/0256 (20130101); A61F 2/30744 (20130101); A61F 2/442 (20130101); A61F 2002/2835 (20130101); A61F 2002/30143 (20130101); A61F 2002/30235 (20130101); A61F 2002/30405 (20130101); A61F 2002/30774 (20130101); A61F 2002/30785 (20130101); A61F 2002/30787 (20130101); A61F 2002/3085 (20130101); A61F 2002/4475 (20130101); A61F 2002/448 (20130101); A61F 2002/4619 (20130101); A61F 2002/4623 (20130101); A61F 2002/4627 (20130101); A61F 2002/4629 (20130101); A61F 2002/4681 (20130101); A61F 2220/0025 (20130101); A61F 2230/0017 (20130101); A61F 2230/0069 (20130101)
Current International Class: A61B 17/16 (20060101); A61B 17/17 (20060101); A61B 17/88 (20060101); A61F 2/46 (20060101); A61F 2/44 (20060101); A61F 2/30 (20060101); A61F 2/28 (20060101); A61F 2/00 (20060101); A61B 19/00 (20060101); A61B 17/02 (20060101); A61B 017/56 ()
Field of Search: ;606/60,61,72,73,74,80,86-88 ;623/16,17 ;408/222 ;470/198

Claims

What I claim is:

1. A method for inserting an implant across the disc space and into two adjacent vertebrae through a tubular member comprising the steps of: inserting a tubular member havingmeans to engage said two adjacent vertebrae; placing through said tubular member a drill having a diameter greater than said disc space; drilling an opening across the disc space and into a portion of each of the two adjacent vertebrae through saidtubular member; removing said drill; inserting an implant in the opening through the tubular member; and then removing said tubular member.

2. The method of claim 1 in which said drill has means associated therewith for limiting the depth of the drilling.

3. The method of claim 1 in which said implant is made of a material that promotes bone ingrowth.

4. The method of claim 1 including the step of tapping the opening formed by the drill in the disc to create a thread in the vertebrae, said step of tapping being preformed through said tubular member.

5. A method for removing the disc between two adjacent vertebrae comprising inserting a tubular member having means to engage two vertebrae into the vertebrae, said tubular member having a inner removable sleeve; drilling the disc and a portionof the two adjacent vertebrae through said tubular member; tapping the opening formed by the drill in the disc to create a thread in the vertebrae; inserting a cylindrical implant having corresponding threads to those formed by the tap in the vertebraethrough the tubular member; and then removing said tubular member.

6. A method for removing the disc between two adjacent vertebrae comprising inserting a tubular member having means to engage two vertebrae into the vertebrae, said tubular member is installed in said vertebrae by placing a driver within saidtubular member and hitting the driver with a hammer; drilling the disc and a portion of the two adjacent vertebrae through said tubular member; tapping the opening formed by the drill in the disc to create a thread in the vertebrae; inserting acylindrical implant having corresponding threads to those formed by the tap in the vertebrae through the tubular member; and then removing said tubular member.

7. A method for preparing two adjacent vertebrae and a disc space therebetween to receive at least one implant, the method comprising the steps of:

positioning one end of a tubular member in contact with the adjacent vertebrae;

forming, through said tubular member, an opening across the disc space and into a portion of each of the two adjacent vertebrae; and

inserting said implant through said tubular member and into the opening.

8. The method of claim 7, wherein the step of positioning includes the step of impacting said one end of said tubular member into the spine.

9. The method of claim 7, wherein the step of positioning includes the step of driving said one end of said tubular member against the two adjacent vertebrae.

10. The method of claim 7, further comprising the step of embedding said one end of said tubular member into the disc space after the step of positioning.

11. The method of claim 7, further comprising the step of embedding said one end of said tubular member into the disk space after the step of positioning.

12. The method of claim 7, wherein the forming step includes the sub-step of milling the opening.

13. The method of claim 7, wherein the forming step includes the sub-step of drilling the opening.

14. The method of claim 13, wherein the forming step further comprises the sub-step of placing a drill having a diameter greater than the disc space through said tubular member prior to the sub-step of drilling.

15. The method of claim 13, wherein the forming step further comprises the sub-step of placing a drill through said tubular member prior to the sub-step of drilling.

16. The method of claim 15, further comprising the sub-step of removing said drill after the sub-step of drilling.

17. The method of claim 7, further comprising the step of tapping the opening to provide threads over at least a portion of the vertebrae prior to the step of inserting said implant.

18. The method of claim 17, further comprising the step of placing a tap through said tubular member prior to the step of tapping.

19. The method of claim 18, further comprising the step of removing said tap from said tubular member after the step of tapping.

20. The method of claim 7, wherein the step of inserting includes the sub-step of screwing said implant into the opening through said tubular member.

21. The method of claim 7, further comprising the step of attaching a driving member to said implant prior to the step of inserting.

22. The method of claim 21, wherein the step of inserting includes the sub-step of using said driving member to insert said implant into the opening through said tubular member.

23. The method of claim 22, further comprising the step of removing said driving member from said implant after the step of inserting said implant.

24. The method of claim 23, further comprising the step of removing said driving member from said tubular member after the step of inserting said implant.

25. The method of claim 23, further comprising the step of removing said driving member and said tubular member together after the step of inserting said implant.

26. The method of claim 7, further comprising the step of removing said tubular member after the step of inserting said implant.

27. The method of claim 7, further comprising the step of loading said implant with fusion promoting material prior to the step of inserting.

28. The method of claim 27, wherein the step of loading includes the sub-step of compressively loading said implant with fusion material.

29. The method of claim 27, wherein the step of loading includes the sub-step of forcibly injecting said implant with fusion material.

30. The method of claim 27, further comprising the step of retaining the fusion material within said implant after the step of loading.

31. The method of claim 30, wherein the step of retaining includes the sub-step of attaching a cap to said implant to retain the fusion material.

32. The method of claim 7, further comprising the step of loading said implant with osteogenic material prior to the step of inserting.

33. The method of claim 7, wherein the step of inserting includes inserting an implant containing a fusion promoting substance.

34. The method of claim 7, wherein the step of inserting includes inserting an implant comprising a fusion promoting substance.

35. The method of claim 7, wherein the step of inserting includes inserting an implant comprising a bone ingrowth surface.

36. The method of claim 7, further comprising the step of placing an inner tubular sleeve within said tubular member prior to the step of forming the opening.

37. The method of claim 36, wherein the forming step includes the sub-step of drilling the opening.

38. The method of claim 37, further comprising the step of removing said inner tubular sleeve prior to the step of inserting said implant.

39. The method of claim 37, wherein the forming step further comprises the sub-step of placing a drill through said inner tubular sleeve prior to the sub-step of drilling.

40. The method of claim 39, further comprising the step of removing said inner tubular sleeve and said drill together prior to the inserting step.

41. The method of claim 7, wherein the step of positioning includes the sub-step of non-distractively engaging the two adjacent vertebrae with said one end of said tubular member.

42. A method for preparing two adjacent vertebrae and a disc space therebetween to receive at least one implant, the method comprising the steps of:

positioning one end of a substantially tubular member in contact with the adjacent vertebrae, said tubular member having at least a portion thereof extending into the disc space;

forming, through said tubular member, an opening across the disc space and into a portion of each of the two adjacent vertebrae; and

inserting said implant through said tubular member and into the opening.

43. A method for preparing two adjacent vertebrae and a disc space therebetween to receive an implant, the method comprising the steps of:

abutting one end of a tubular member against the adjacent vertebrae, said tubular member having at least a portion thereof extending into the spine;

forming, through said tubular member, an opening across the disc space and into a portion of each of the two adjacent vertebrae; and

inserting said implant through said tubular member and into the opening.

44. A method for preparing two adjacent vertebrae and a disc space therebetween to receive an implant, the method comprising the steps of:

contacting the adjacent vertebrae with one end of a tubular member;

forming, through said tubular member, an opening across the disc space and into a portion of each of the two adjacent vertebrae; and

inserting said implant through said tubular member and into the opening.

45. A method for preparing two adjacent vertebrae and a disc space therebetween to receive an implant, the method comprising the steps of:

burying into the disk space one end of a tubular member;

forming, through said tubular member, an opening across the disc space and into a portion of each of the two adjacent vertebrae; and

inserting said implant through said tubular member and into the opening.

46. A method for preparing two adjacent vertebrae and a disc space therebetween to receive an implant, the method comprising the steps of:

anchoring one end of a substantially tubular member against the two adjacent vertebrae so that at least a portion of said one end of said tubular member extends at least in part between the adjacent vertebrae and into the disc space;

forming, through said tubular member, an opening across the disc space and into a portion of each of the two adjacent vertebrae; and

inserting said implant through said tubular member and into the opening.

47. The method of claim 46 wherein the step of anchoring includes the step of impacting said one end of said tubular member into the spine.

48. The method of claim 46, wherein the step of anchoring includes the step of driving said one end of said tubular member against the two adjacent vertebrae.

49. The method of claim 46, wherein the forming step includes the sub-step of milling the opening.

50. The method of claim 46, wherein the forming step includes the sub-step of drilling the opening.

51. The method of claim 50, wherein the forming step further comprises the sub-step of placing a drill having a diameter greater than the disc space through said tubular member prior to the sub-step of drilling.

52. The method of claim 50, wherein the forming step further comprises the sub-step of placing a drill through said tubular member prior to the sub-step of drilling.

53. The method of claim 52, further comprising the sub-step of removing said drill after the sub-step of drilling.

54. The method of claim 46, further comprising the step of tapping the opening to provide threads over at least a portion of the vertebrae prior to the step of inserting said implant.

55. The method of claim 54, further comprising the step of placing a tap through said tubular member prior to the step of tapping.

56. The method of claim 55, further comprising the step of removing said tap from said tubular member after the step of tapping.

57. The method of claim 46, wherein the step of inserting includes the sub-step of screwing said implant into the opening through said tubular member.

58. The method of claim 46, further comprising the step of attaching a driving member to said implant prior to the step of inserting.

59. The method of claim 58, wherein the step of inserting includes the sub-step of using said driving member to insert said implant into the opening through said tubular member.

60. The method of claim 59, further comprising the step of removing said driving member from said implant after the step of inserting said implant.

61. The method of claim 60, further comprising the step of removing said driving member from said tubular member after the step of inserting said implant.

62. The method of claim 60, further comprising the step of removing said driving member and said tubular member together after the step of inserting said implant.

63. The method of claim 46, further comprising the step of removing said tubular member after the step of inserting said implant.

64. The method of claim 46, further comprising the step of loading said implant with fusion promoting material prior to the step of inserting.

65. The method of claim 64, wherein the step of loading includes the sub-step of compressively loading said implant with fusion material.

66. The method of claim 64, wherein the step of loading includes the sub-step of forcibly injecting said implant with fusion material.

67. The method of claim 46, further comprising the step of loading said implant with osteogenic material prior to the step of inserting.

68. The method of claim 46, wherein the step of inserting includes inserting an implant containing a fusion promoting material.

69. The method of claim 46, wherein the step of inserting includes inserting an implant comprising a fusion promoting material.

70. The method of claim 46, wherein the step of inserting includes inserting an implant comprising a bone ingrowth surface.

71. The method of claim 64, further comprising the step of retaining the fusion material within said implant after the step of loading.

72. The method of claim 71, wherein the step of retaining includes the sub-step of attaching a cap to said implant to retain the fusion material.

73. The method of claim 46, further comprising the step of placing an inner tubular sleeve within said tubular member prior to the step of forming the opening.

74. The method of claim 73, wherein the forming step includes the sub-step of drilling the opening.

75. The method of claim 74, further comprising the step of removing said inner tubular sleeve prior to the step of inserting said implant.

76. The method of claim 74, wherein the forming step further comprises the sub-step of placing a drill through said inner tubular sleeve prior to the sub-step of drilling.

77. The method of claim 76, further comprising the step of removing said inner tubular sleeve and said drill together prior to the inserting step.

78. The method of claim 46, wherein the step of positioning includes the sub-step of non-distractively engaging the two adjacent vertebrae with said one end of said tubular member.

79. A method for preparing two adjacent vertebrae and a disc space therebetween to receive an implant, the method comprising the steps of:

non-distractively engaging the two adjacent vertebrae with one end of a tubular member;

forming, through said tubular member, an opening across the disc space and into a portion of each of the adjacent vertebrae; and

inserting said implant through said tubular member and into the opening.

80. A method for preparing two adjacent vertebrae and a disc space therebetween to receive an implant, the method comprising the steps of:

driving one end of a tubular member against the two adjacent vertebrae;

forming, through said tubular member, an opening across the disc space and into a portion of each of the adjacent vertebrae; and

inserting, through said tubular member, said implant into the opening.

81. The method of claim 80, wherein the forming step includes the sub-step of drilling the opening.

82. The method of claim 81, wherein the forming step includes the sub-step of tapping the opening.

83. The method of claim 80, further comprising the step of removing said tubular member after the step of inserting.

84. A method for preparing two adjacent vertebrae and a disc space therebetween to receive at least one implant, the method comprising the steps of:

positioning one end of a hollow guard in contact with the adjacent vertebrae;

a forming, through said hollow guard, an opening across the disc space and into a portion of each of the two adjacent vertebrae; and

inserting said implant through said hollow guard and into the opening.

85. A method for preparing two adjacent vertebrae and a disc space therebetween to receive an implant, the method comprising the steps of:

anchoring one end of a hollow guard against the two adjacent vertebrae so that at least a portion of said one end of said hollow guard extends at least in part between the adjacent vertebrae and into the disc space;

forming, through said hollow guard, an opening across the disc space and into a portion of each of the two adjacent vertebrae; and

inserting said implant through said hollow guard and into the opening.


Description BACKGROUND

The present invention relates to an artificial fusion implant to be placed into the intervertebral space left after he removal of a damaged spinal disc.

The purpose of the present invention is to provide an implant to be placed within the intervertebral disc space and provide for the permanent elimination of all motion at that location. To do so, the device is space occupying within the discspace, rigid, self-stabilizing to resist dislodgement, stabilizing to the adjacent spinal vertebrae to eliminate local motion, and able to intrinsically participate in a vertebra to vertebra bony fusion so as to assure the permanency of the result.

At present, following the removal of a damaged disc, either bone or nothing is placed into the space left. Placing nothing in the space allows the space to collapse which may result in damage to the nerves; or the space may fill with scar tissueand eventually lead to a reherniation. The use of bone is less than optimal in that the bone obtained from the patient requires additional surgery and is of limited availability in its most useful form, and if obtained elsewhere, lacks living bonecells, carries a significant risk of infection, and is also limited in supply as it is usually obtained from accident victims.

Furthermore, regardless of the source of the bone, it is only marginal structurally and lacks a means to either stabilize itself against dislodgement, or to stabilize the adjacent vertebrae.

A review of related prior art will demonstrate the novelty of the present invention.

There have been an extensive number of attempts to develop an acceptable disc prothesis (an artificial disc).

Such devices by design would be used to replace a damaged disc and seek to restore the height of the interspace and to restore the normal motion of that spinal joint. No such device has been found that is medically acceptable. This group ofprosthetic or artificial disc replacements, seeking to preserve spinal motion and so are different from the present invention, would include:

U.S. Pat. No. 3,867,728 STUBSTAD–describing a flexible disc implant.

U.S. Pat. No. 4,349,921 KUNTZ–describing a flexible disc replacement with file like surface projections to discourage device dislocation.

U.S. Pat. No. 4,309,777 PATIL–describing a motion preserving implant with spiked outer surfaces to resist dislocation and containing a series of springs to urge the vertebrae away from each other.

U.S. Pat. No. 3,875,595 FRONING–describing a motion preserving bladder like disc replacement with two opposed stud-like projections to resist dislocation.

U.S. Pat. No. 2,372,622 FRENCH (FASSIO)–describing a motion preserving implant comprising complimentary opposed convex and concave surfaces.

In summary then, these devices resemble the present invention only in that they are placed within the intervertebral space following the removal of a damaged disc. In that they seek to preserve spinal motion, they are diametrically differentfrom the present invention which seeks to permanently eliminate all motion at that spinal segment.

A second related area of prior art includes those devices utilized to replace essentially wholly removed vertebra. Such removal is generally necessitated by extensive vertebral fractures, or tumors, and is not associated with the treatment ofdisc disease. While the present invention is to be placed within the disc space, these other vertebral devices cannot be placed within the disc space as at least one vertebra has already been removed such that there no longer remains a “disc space.”Furthermore, these devices are limited in that they seek to perform as temporary structural members mechanically replacing the removed vertebra (not a removed disc), and do not intrinsically participate in supplying osteogenic material to achieve crossvertebrae bony fusion. Therefore, again unlike the present invention which provides for a source of osteogenesis, use of this group of devices must be accompanied by a further surgery consisting of a bone fusion procedure utilizing conventionaltechnique. This group consisting of vertebral struts rather than disc replacements would include the following:

U.S. Pat. No. 4,553,273 WU–describing a turnbuckle like vertebral strut.

U.S. Pat. No. 4,401,112 REZAIAN–describing a turnbuckle like vertebral strut with the addition of a long stabilizing staple that spans the missing vertebral body.

U.S. Pat. No. 4,554,914 KAPP–describing a large distractible spike that elongates with a screw mechanism to span the gap left by the removal of a entire vertebra and to serve as an anchor for acrylic cement which is then used to replace themissing bone (vertebra).

U.S. Pat. No. 4,636,217 OGILVIE–describing a vertebral strut mechanism that can be implanted after at least one vertebra has been removed and which device consists of a mechanism for causing the engagement of screws into the vertebra above andthe vertebrae below the one removed.

In summary then, this group of devices differs from the present invention in that they are replacements struts, do not intrinsically participate in the bony fusion, can only be inserted in the limited circumstances where an entire vertebra hasbeen removed from the anterior approach, and are not designed for, or intended to be used for the treatment of disc disease.

A third area of prior art related to the present invention includes all devices designed to be applied to one of the surfaces of the spine. Such devices include all types of plates, struts, and rods which are attached by hooks, wires and screws. These devices differ significantly from the present invention in that they are not inserted within the disc space, and furthermore do not intrinsically participate in supplying osteogenic material for the fusion.

Therefore, with these devices where permanent spinal immobilization is desired an additional surgery consisting of a spinal fusion performed by conventional means or the use of supplemental methylmethacrylate cement is required. Such devicesapplied to the spine, but not within the disc space, would include the following:

U.S. Pat. No. 4,604,995–STEPHENS–describing a “U” shaped metal rod attached to the posterior elements of the spine with wires to stabilize the spine over a large number of segments.

U.S. Pat. No. 2,677,369–KNOWLES–describing a metal column device to be placed posteriorly along the lumbar spine to be held in position by its shape alone and to block pressure across the posterior portions of the spinal column by locking thespine in full flexion thereby shifting the maximum weight back onto the patient’s own disc.

Other devices are simply variations on the use of rods (e.g. Harrington Luque, Cotrel-Dubosset, Zielke), wires or cables (Dwyer), plates and screws (Steffee), or struts (Dunn, Knowles).

In summary, none of these devices are designed or can be used within the disc space, do not replace a damaged disc, and do not intrinsically participate in the generation of a bony fusion.

Another area of related prior art to be considered is that of devices designed to be placed within the vertebral interspace following the removal of a damaged disc, and seeking to eliminate further motion at that location.

Such a device is contained in U.S. Pat. No. 4,501,269 BAGBY–describing an implantable device and limited instrumentation. The method employed is as follows: a hole is bored transversely across the joint and then a hollow metal basket oflarger diameter than the hole is then pounded into the hole and then filled with the bone debris generated by the drilling.

While the present invention (device, instrumentation, and method) may appear to bear some superficial resemblance to the BAGBY invention, it is minimal, while the differences are many fold and highly significant. These differences include thefollowing:

1. Safety–The present invention provides for a system of completely guarded instrumentation so that all contiguous vital structures (e.g. large blood vessels, neural structures) are absolutely protected. Said instrumentation also makesoverpenetration by the drill impossible. Such overpenetration in the cervical spine, for example, would result in the total paralysis or death of the patient. In the thoracic spine, the result would be complete paraplegia. In the lumbar spine, theresult would be paraplegia or a life-threatening perforation of the aorta, vena cava, or iliac vessels. The present invention is atraumatically screwed into place while the BAGBY device, in contradistinction, is pounded into position. BAGBY describesthat the implant is significantly larger in size than the hole drilled and must be pounded in. This is extremely dangerous and the pounding occurs directly over the spinal cord which is precariously vulnerable to percussive injury. Furthermore, while itis possible, for example in the lumbar spine, to insert the present invention away from the spinal cord and nerves, the BAGBY device must always be pounded directly towards the spinal cord.

Furthermore, since the BAGBY device is pounded into a smooth hole under great resistance, and lacking any specific design features to secure it, the device is highly susceptible to forceful ejection which would result in great danger to thepatient and a clinical failure. The present invention, in contradistinction, is securely screwed into place, and possesses highly specialized locking threads to make accidental dislodgement impossible. Because of the proximity of the spinal cord,spinal nerves, and blood vessels, any implant dislodgement as might occur with the BAGBY device might have catastrophic consequences.

2. Broad applicability–The BAGBY device can only be inserted from the front of the vertebral column, however, the present invention can be utilized in the cervical, thoracic, and lumbar spine, and can be inserted from behind (posteriorly) inthe lumbar spine. This is of great importance in that the purpose of these devices is in the treatment of disc disease and probably greater than 99 percent of all lumbar operations for the treatment of disc disease are performed from behind where thepresent invention can easily be utilized, but the BAGBY device, as per his description, cannot.

3. Disc removal–The BAGBY invention requires the complete removal of the disc prior to the drilling step, whereas the present invention eliminates the laborious separate process of disc removal and efficiently removes the disc and prepares thevertebral end plates in a single step.

4. Time required–The present invention saves time over the BAGBY invention in that time is not wasted laboring to remove the disc prior to initiating the fusion. Also, since with the present invention the procedure is performed through asystem of guarded instrumentation, time is not wasted constantly placing and replacing various soft tissue retractors throughout the procedure.

5. Implant stability–Dislodgement of the implant would be a major source of device failure (an unsuccessful clinical result), and might result in patient paralysis or even death. As discussed, the BAGBY device lacks any specific means ofachieving stability and since it is pounded in against resistance to achieve vertebral distraction, it is susceptible to forceful dislodgement by the tendency of the two distracted vertebrae, to return to their original positions squeezing out thedevice. The present invention however is screwed into place. As there is no unscrewing force present between the vertebrae and compression alone cannot dislodge the implant, the implant is inherently stable by its design. Furthermore, the threads ofthe present invention are highly specialized in that they are periodically interrupted such that the tail ends of each of the tabs so formed are blunted and twisted so as to resist accidental unscrewing. The removal of an implant with such “lockingthreads” requires the use of a special extractor included within the instrumentation. The stability of the present invention is still further enhanced, again in contradistinction to the BAGBY device, by the presence of a “bone ingrowth” surfacetexturing, which both increases the friction of the fit and allows for the direct growth of the vertebral bone into the casing of the implant itself.

6. Spinal stability–The present invention is not only self-stabilizing, it also provides stability to the adjacent vertebrae in at least three ways that the BAGBY device cannot. First, the BAGBY device is placed transversely across the jointin the center, leaving both vertebrae free to rock back and forth over this round barrel shaped axis, much like a board over a barrel, being used for a seesaw.

Secondly, as the BAGBY device lacks any specific design features to resist sliding, it may actually behave as a third body allowing the translation of the vertebrae relative to the device and to each other.

Thirdly, any device can only provide stability if it remains properly seated. The present invention is inherently stable, and therefore assures that it will stabilize the adjacent vertebrae; rather than, as with the BAGBY device, where theinstability of the spine to be treated may instead cause a dislocation of the implant, with further loss of spinal stability.

7. The collapse of the interspace–While both the present invention and the BAGBY device can be fabricated to withstand the compression forces within the interspace, the interspace may nevertheless collapse under the superincumbent body weightas the implant settles into the vertebral bone. This is related to the load per unit area. Again the present invention is superior to the BAGBY device in at least four ways. First, the present invention offers considerably greater surface area todistribute the load. Secondly, while the BAGBY device is placed centrally, the present device is placed bilaterally where the bone tends to be more cortical and much stronger out towards the rim. Thirdly, the present invention supports the loadachieving an “I” beam effect, whereas the BAGBY implant does not. Fourthly, it is not pressure alone that causes the collapse of the bone adjacent to the implant, but also bony erosion that is caused by the motion under pressure of the implant againstthe bone. As discussed in item #6 above, the present invention alone is highly resistant to such motion, again diminishing the likelihood of erosion and interspace collapse.

8. Bone ingrowth surface texturing–The present invention has a surface treatment of known and conventional technology to induce the growth of bone from the vertebrae directly into the casing material of the implant itself. The BAGBY device hasno similar feature.

9. Fusion mass–The BAGBY invention calls for removing the disc and then drilling a hole between the adjacent vertebrae. The bony debris so generated is then put into the device. The present invention takes a core of pure bone producing marrowfrom the iliac crest, and then by use of a special press forcibly injects the device with an extremely dense compressed core of that osteogenic material until the material itself virtually extrudes from every cell of the implant.

10. The probability of achieving fusion–The fusion rate within the spine is known to be related directly to the amount of exposed vascular bone bed area, the quality and quantity of the fusion mass available, and the extent of the stabilizationobtained with all other factors being hold constant. It would then be anticipated, that the fusion rate would be superior with the present invention as compared to the BAGBY device, because of optimal implant stability (#5), optimal spinal stability(#6), bone ingrowth surface treatment (#8), superior fusion mass (#9), and the greater exposed vertebral bony surface area (#7).

The last area of prior art possibly related to the present invention and therefore, to be considered related to “BONY INGROWTH”, and patents either describe methods of producing materials and or materials or devices to achieve the same. Suchpatents would include:

U.S. Pat. No. 4,636,526 (DORMAN), No. 4,634,720 (DORMAN), No. 4,542,539 (ROWE), No. 4,405,319 (COSENTINO), No. 4,439,152 (SMALL), No. 4,168,326 (BROEMER), No. 4,535,485 (ASHMAN), No. 3,987,499 (SCHARBACH), No. 3,605,123 (HAHN), No. 4,655,777(DUNN), No. 4,645,503 (LIN), No. 4,547,390 (ASHMAN), No. 4,608,052 (VAN KAMPEN), No. 4,698,375 (DORMAN), No. 4,661,536 (DORMAN), No. 3,952,334 (BOKROS), No. 3,905,047 (LONG), No. 4,693,721 (DUCHEYNE), No. 4,070,514 (ENTHERLY).

However, while the present invention would utilize bone ingrowth technology, it would do so with conventional technology.

In summary then, the present invention, instrumentation, and method, alone provides for a one stage discectomy, fusion, and interbody internal spinal fixation; that being performed more quickly, with greater safety, and more affectively, for allof the aforementioned reasons than is possible with any other known art.

BRIEF SUMMARY OF THE INVENTION

The present invention comprises a series of artificial implants, the purpose of which is to participate in, and directly cause bone fusion across an intervertebral space following the excision of a damaged disc. Such implants are structurallyload bearing devices, stronger than bone, capable of withstanding the substantial forces generated within the spinal interspace. Such devices have a plurality of macro sized cells and openings, which can be loaded with fusion promoting materials, suchas autogenous bone, for the purpose of materially influencing the adjacent vertebrae to form a bony bond to the implants and to each other. The implant casing may be surface textured or otherwise treated by any of a number of known technologies toachieve a “bone ingrowth surface” to further enhance the stability of the implant and to expedite the fusion.

Further, said devices are so configured and designed so as to promote their own stability within the vertebral interspace and to resist being dislodged, and furthermore, to stabilize the adjacent spinal segments.

The apparatus for preparing the vertebrae for insertion of the implant is also disclosed, such instrumentation and method allowing for the rapid and safe removal of the disc, preparation of the vertebrae, performance of the fusion, and internalstabilization of the spinal segment.

DISCUSSION OF THE INSTRUMENTATION

The concept of performing various aspects of this surgery are not entirely new. Drills are frequently placed through hollow, tubular guards to protect the adjacent soft tissues. A set of instruments developed by Ralph Cloward utilizes such atubular drill guard on a larger scale, for the purpose of drilling into the cervical spine. However, this inventor is unaware of any set of instruments, system, or procedure designed to allow the entire surgical procedure beyond the initial exposure, tobe performed blindly and with complete safety through a fixed sheath apparatus. Specific design features which combine to male this uniquely possible are as follows:

1. The availability of the specific implant.

2. The end of all the penetrating instrumentation is blunt faced.

3. All of the instruments have been stopped out at a predetermined depth to avoid overpenetration.

4. The design of the external sheath conforms to the spacial limitations of the specific surgical site.

5. The design and use of a second or inner sheath allows for the difference in size between the inside diameter of the outer sheath, and the outside diameter of the drill itself. This difference being necessary to accommodate the sum of thedistraction to be produced, and the depth of the circumferential threading present on the implant.

6. A specially designed drill bit with a central shaft recess allows for the safe collection of the drilling products, which can then be removed without disturbing the outer sheath by removing the drill bit and inner sheath as a single unit.

7. A specially designed trephine for removing a core of bone slightly smaller in diameter than the internal diameter of the implant cavity itself, however of a greater length.

8. A specially designed press for forcefully compressing and injecting the long core of autogenous bone into the implant, such that it extrudes through the implant itself.

9. A specially designed driver extractor, which attaches to the implant and allows the implant to be either inserted or removed without itself dissociating from the implant, except by the deliberate disengagement of the operator.

OBJECTS OF THE PRESENT INVENTION

It is an object of the present invention to provide an improved method of performing a discectomy, a fusion, and an internal stabilization of the spine, and specifically, all three of the above simultaneously and as a single procedure.

It is another object of the present invention to provide an improved method of performing a discectomy, a fusion, and an internal stabilization of the spine, which is both quicker and safer than is possible by previous methods.

It is another object of the present invention to provide an improved method of performing a discectomy, a fusion, and an internal stabilization of the spine, to provide for improved surgical spinal implants.

It is another object of the present invention to provide an improved method of performing a discectomy, a fusion, and an internal stabilization of the spine, which provides for an improved system of surgical instrumentation to facilitate theperformance of the combined discectomy, fusion, and internal spinal stabilization.

These and other objects of the present invention will be apparent from review of the following specifications and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partial view of the vertebrae structure with the driver and outer sheath assembly of the present invention.

FIG. 1A is a perspective view of the driver member for the outer sheath.

FIG. 2 is a perspective view of the outer sheath being inserted into the vertebrae structure.

FIG. 3 is a perspective view of the outer sheath and inner sheath assembly, with the drill bit of the present invention.

FIG. 3A is a side sectional view of the collar and drill bit of FIG. 3.

FIG. 4 is a perspective view of a cylindrical implant and vertebrae structure.

FIG. 4A is a perspective view of one preferred embodiment of the implant.

FIG. 4B is a cross sectional view of the implant of FIG. 4A.

FIG. 4C is the driving and insertion equipment for the implant of FIG. 4A.

FIG. 4d is a side sectional view of the driver and implant between vertebrae.

FIG. 5 is a sectional view of the vertebrae structure, taken along lines 5–5 of FIG. 4.

FIG. 6 is a perspective view of the surgical Tap.

FIG. 7 is a side view of the Outer Sleeve and the surgical Tap fully threaded within the interspace.

DETAILED DESCRIPTION OF THE DRAWINGS

Referring to FIG. 1 a vertebrae structure comprising two vertebrae V and a disc D between the two vertebrae, is shown. A hollow tubular drill sleeve 10 has teeth 12 at its lower end. The sleeve 10 has an enlarged diameter upper portion 14.

A driver 16, shown in FIG. 1A, consists of a solid tubular member 18 and an increased diameter head 20. The external diameter of the solid tubular member 18 is slightly smaller than the inside diameter of the hollow tubular drill sleeve 10 andhas a length that is substantially shorter than the overall length of the hollow tubular drill sleeve 10.

The drill sleeve 10 is made of metal in order to be driven into the vertebrae V and be held in place by the teeth 12 of the drill sleeve 10.

Referring to FIG. 2 the drill sleeve 10 with the driver 16 installed is shown being driven into two vertebrae V on either side of a disc D by hammer H.

Referring to FIGS. 3 and 3a the drill assembly is shown. In FIG. 3 the drill sleeve 10 is illustrated in the two vertebrae V, straddling the disc D.

The retaining sleeve 15 has an outside diameter slightly smaller than the inside diameter of the drill sleeve 10, and a length substantially the same length as the drill sleeve 10. The retaining sleeve 15 has a collar 17 at its upper end forengaging the top of the drill sleeve 10.

The drill 22 comprises an upper portion 24, a central recessed portion 26 and a lower cutting drill portion 28. The upper 24 and lower portion 28 of the drill 22 have the same outside diameter. The drill 24 has a collar 30 attached to the upperportion 24 of the drill 22.

The outside diameter of the drill 22 is slightly smaller than the inside diameter of the retaining sleeve 15. The length of the drill, from the collar 30 to the end of the drill bit, is such that a predetermined portion of the drill bit 22extends beyond the end 29 of the sleeve when fully inserted.

Referring to FIG. 4, a cylindrical embodiment of the present invention is shown, one implant positioned in the opening in the vertebrae and disc formed by the drill 22, and a second implant shown prior to implantation.

The cylindrical implant 50 comprises a hollow tubular member which in the preferred embodiment is made of an ASTM surgically implantable material, and preferably Titanium. The cylindrical implant 50 is closed at one end 52 and open at the otherend 54. The outer cylindrical implant 50 has a series of macro-sized openings 56 through the side walls of the cylindrical member 50. A series of external threads 53 are formed on the circumference of the cylindrical implant 50. The threads 53 arelocking threads having a series of interjections, the ends of which are blunted and twisted so as to resist unscrewing.

The open end 54 of the cylindrical implant 50 has an internal thread 51 for receiving a complementary cap 52 which has an external thread 58 for engaging the internal threads 51 of the cylindrical member 50. The cap 52 has a hexagonal opening 59for use with an allen wrench for tightening the cap. A driver engaging element 70 is located on the rear surface 60 of the implant. The driver engaging element 70 comprises a raised rectangular portion 63 and a central threaded opening 65, for engagingthe driver apparatus, shown in FIG. 4c and FIG. 4d. The driving equipment 100 comprises a central tubular rod 102 having a thread fitting into opening 65 in the implant. An enlarged knurled knob 106 is affixed to the other end of the rod 102 for easein turning. The central rod 102 is enclosed within a hollow tubular member 108, having a narrow lower portion 110 and an increased diameter upper portion 112. At the end of the lower portion 110 is a attachment member 114, having a generallyrectangular depression 116 for complementing the driver engaging element 70 of the implant 50. A pair of handles 118 and 120 extend perpendicular from the upper position 112 of the tubular member 108 to assist in turning the driver 100.

The operation is performed in the following manner: (Example Lumbar Spine Posterior Approach) A skin incision is made directly over the interspace to be operated on. The dissection is carried down along side of the superspinous and intraspinousligaments preserving those structures. A semi hemi laminotomy is performed at the upper level, removing sufficient bone to allow access into the interspace. The ligament flavum is removed and then the dural sac is protected by retracting it mediallyalong with the traversing (inferior) nerve root. The superior nerve root or the root exiting beneath the pedicle at the level above is visualized and protected.

At this time the drill sleeve 10 is placed into the spinal canal with both nerve roots directly inspected and protected. The drill sleeve 10 is imbedded by teeth 12 spanning the disc space from the midline over and it is seated into the twovertebrae V across the disc D space by using a driver 20. Once this is done, the driver 20 is removed and a retaining sleeve 15 is placed through the drill sleeve 10. Once seated, sleeve 10 provides absolute protection to the dural sac and nerve rootsas the remaining surgery is performed entirely through this sleeve.

The inner sleeve allows for the difference between the outside diameter of the drill 22 and the outside diameter of the threads 53 of the cylindrical implant 50. This then makes it possible to perform the entire operation through the Lumen ofthe imbedded outer sleeve despite the differences in diameter between the drill and the implant.

A drill 22 is then placed in the retaining sleeve 17. The drill 22 is of such a length that it can not penetrate more then 28 millimeters beyond the end of the drill sleeve 10. This, of course, could be varied and made smaller for enhancedsafety. However at the present time 27 to 28 millimeters seems to be safe for probably 3 standard deviations of the population. The drill 22 is attached to a power unit and the drilling takes place.

The recessed central area between the reduced portion 26 allows for the accumulation of the debris generated by the drilling. At this time, leaving the outer sleeve firmly embedded, the retaining sleeve 17 is removed with the drill 22 as asingle unit. All the vertebrae and disc debris that was generated during the drilling is contained within the recess and against the inside wall of the retaining sleeve 17 and can not come out within the spinal canal. Once the retaining sleeve 17 anddrill 22 is out of the patient’s operative field, all of the material so generated can be removed.

The next step is that a screw tap is put down through the drill sleeve 10. The tap also has a collar on it that will automatically stop the tap from extending beyond 28 millimeters of penetration. The tap itself has a blunt nose that would alsoavoid any perforation. The tap is then removed. The tap size has deliberately been selected so that it’s inner root diameter is 1.3 millimeters greater than the outside diameter of the drill 22. This insures that the interspace will be distracted byat least that much once the implant is placed. The tap has its outside diameter 1.2 millimeters greater than its root diameter. The tap is removed and the space is now prepared to accept the cylindrical implant 50.

Referring to FIGS. 6 and 7, while in the preferred embodiment of the present invention the spinal implant 50 is essentially self-tapping, if the bone is unusually hard it may be desirable to form the thread pattern within the interspace prior tothe insertion of the implant 50. To that end, as shown in FIG. 6, tap 280 has a thread-cutting portion 282 connected to a shaft 286. The tap 280 is further made safe by a blunt nose which will engage the uncut portions of the vertebral bone. Thisfeature allows the surgeon to appreciate a less harsh resistance as the blunt nose encounters the remaining unresected bone for the drill hole. Tap end 282 is highly specialized for its specific purpose. In that regard, in the ideal embodiment, thethread cutting form is designed to compress the bone to be formed rather than to trough through it. Further, while both the major and minor diameters of the tap 280 may be varied, in the preferred embodiment, the minor diameter corresponds to the minordiameter of the implant 50, but the major diameter is slightly less than the major diameter of the implant.

With Tap 280 now removed, and sleeve 10 still in place, the surgical site is now fully prepared to receive the spinal implant 50.

The Implant 50 is prepared by utilizing the trephine, a hollow drill, to obtain a core of pure cancellous bone from the patients iliac crest of slightly smaller diameter than the internal diameter of the implant but approximately 6 mm longer. The implant 50 is placed in a press like device like an ammo loader and the bone graft measuring approximately 32 millimeters is then compressed into the hollow body of the implant (26 mm) so that the bone graft fills the opening 54 and extends throughthe openings 56. The cap 60 is then screwed on to the implant 50 by use of an allen driver/wrench and the device is ready for implantation.

The inserter/remover is such that it lock onto the implant, so that the implant can be moved either clockwise or counter-clockwise, screwed or unscrewed. The implant itself has for its root diameter the same exact root diameter as the tap whichas already noted is already 1.3 millimeters greater than the drill and has an outside diameter, 1.5 millimeters greater than its root. This is also 0.3 millimeters greater than the threads cut by the tap so that in inserting the device it is actuallycutting through previously uncut bone helping to insure that it locks in firmly. The threads on the implant 50 are locking threads so that it is easier to screw the device in than for it to be unscrewed. However, with sufficient torque it is possibleto extract the device if ones so desires.

Once the implant has been seated it is able to be inserted only 28 millimeters. Since the implant 50 is only 26 millimeters in length, this virtually guarantees that the implant 50 will be recessed into the vertebral bodies more than 2millimeters and can not protrude into the spinal canal.

Similarly, the implants shown in FIG. 4b can be implanted. The implant in FIG. 4b is a modified solid, having extensive channelling throughout, and has no cap. A central opening 61 permits insertion of the bone graft material into the interiorof the implant.

These implants have a surface configuration such as to induce bone ingrowth through the implant, and into the wall of the vertebrae in effect inducing fusion from one vertebrae in joint to the other, thereby eventually making the implant itselfsuperfluous as the bone would do the work.

The implant itself, because of its being made of stronger material than bone, would provide structural support to the two vertebrae while awaiting bone ingrowth. Once the bone ingrowth occurred, however, the implant would be firmly andpermanently fixed in place.

As shown in FIG. 4, more than one implant is inserted into the disc space, thereby preventing the rocking motion that would result in the difficulties referred to above in the discussion of the Bagby patent.

Referring to FIGS. 6 and 7, while in the preferred embodiment of the present invention the spinal implant 50, is essentially self-tapping, if the bone is unusually hard it may be desirable to form the thread pattern within the interspace prior tothe insertion of the implant 50. To that end, as shown in FIG. 6, Tap 280 has a thread-cutting portion 282 connected to a shaft 286 This tap 280 is further made safe by blunt end 294 which will engage the uncut portions of the vertebral bone just priorto the engagement of shoulder 288 against surface 172. This feature allows the surgeon to appreciate a less harsh resistance as the blunt nose 294 encounters the remaining unresected bone for the drill hole which first resistance serves as a warning tothe surgeon to discontinue the tapping procedure. Thus, the surgeon has tactile warnings to avoid stripping the thread form. Tap end 282 is highly specialized for its specific purpose. The periodic longitudinal grooves 284 interrupting the threadforms, which may number 1 to 8, but preferably 4, function to accumulate the bony material which is removed during the thread cutting process. In that regard, in the ideal embodiment, the thread cutting form is designed to compress the bone to be formedrather than to trough through it. Further, while both the major and minor diameters of the Tap 280 may be varied, in the preferred embodiment, the minor diameter corresponds to the minor diameter of the implant 50, but the major diameter is slightlyless than the major diameter of the implant.

With Tap 280 now removed, and sleeve 10 still in place, the surgical site is now fully prepared to receive the spinal implant 50.

While the invention has been described with regards to the preferred embodiment, it is recognized that alternative embodiment may be devised which would not depart from the present invention.